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by design, it follows from (32)-(34) that

x=—k_
STtk

for all practical slot widths and thicknesses.

From physical considerations, it is known that 0 < k <1
and, hence from (35), the range of x is 0 < x < 0.5. In order
to satisfy this constraint, it is necessary to select the
solution with the negative sign before the square root in

(28). Therefore
x=(1-V1-12)/1
and from (35) it follows that
1-V1-22
i (1-1-1)

which is the desired relationship between ¢ and k.

(35)

(36)

(37)
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Experimental Study of the W-Band
Dielectric-Guide Y-Branch

Interferometer
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Abstract — Applicability of a W-band dielectric-guide Y-branch (DGY)
interferometer as a modulator and switching element for the millimeter-wave
planar dielectric-guide integrated circuits is established. The switching
element includes a phase shifter formed by a metal wall proximate to a
dielectric guide.

The influence of the branches asymmetry on the on/off switching ratio
was measured and found to comply with theory. On/off switching ratios of
about 25 dB were obtained over a 98-104-GHz frequency range.
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I. INTRODUCTION

LTHOUGH the dielectric-guide Y-branch (DGY)

interferometer is extensively applied in the optical
integrated circuits for power splitting, light intensity modu-
lation, and switching [1], to our knowledge no experimental
data on this subject has been published with respect to the
millimeter-wave range. This study seeks to establish the
applicability of the Y-branch element in the W-band in-
tegrated circuits. Low radiation losses under even excita-
tion, near-3-dB power division, and low VSWR values were
observed in the Y-junction.
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Fig. 1. The Y-junction analogy to the “magic-T .

In Section II, application of a DGY interferometer as a
low-loss near-3-dB coupler is discussed. The modulation
and switching properties of the DGY interferometer are
studied in Section III, which contains test data on a phase
shifter using a metal plate proximate to a broad wall of the
guide.

These phase shifters may be designed using a distributed
p-i-n diode structure attached to a sidewall of a
millimeter-wave dielectric guide [2], [3]. Another attractive
phase-shifting mechanism based on an induced plasma
state in semiconductor guide [4], [5] may serve for ultrafast
switching. We believe that DGY interferometers using
similar phase shifters may be successfully applied as milli-
meter-wave modulators and switches.

II. Y-JunctioN

A detailed discussion of the near-3-dB Y-junction cou-
pler is given [6]. Relevant results are borrowed here in the
original notations.

A remarkable property of the absolutely symmetric loss-
less dielectric guide Y-junction is the identity of its S-
matrix with that of “magic-7” in microwave circuits. A
Y-junction may be considered as a four-port device in
which the fourth port takes all power radiated out of the
guided-wave system (see Fig. 1). Assuming no reflected
waves, near-3-db power division means coupling of 1,/2(1
+ 8) of port 3 input power into port 1 and 1/2(1— &) of
port 3 input power into port 2. The four-port scattering
matrix correlates the output (E’) and input (E) electric
fields

E/ 0 0
E} 0 0
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E \/ 2 \/ 2
, 1-6 1+6
_E“‘ i 2 - 2

A DGY junction was tested over a range of 98-104 GHz
(Fig. 2). All three ports of the Y-junction are single-mode
2x1-mm teflon (e, =2.057) guides. The broad wall of
branch 3 tapers to 4 mm, and splits symmetrically into
branches 1 and 2.
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Fig. 2. The geometry of the Y-junction.
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Fig. 3. Insertion loss (dB) of the Y-branch interferometer referenced

against the insertion loss of a straight guide section.

The test program included measurements of insertion
losses in the transitional sections of a Y-junction under
even excitation (E, = E,; E;=E,=0). For this purpose,
two Y-junctions were connected back-to-back, forming an
interferometer. Fig. 3 represents the total insertion losses in
an interferometer, as referred to the loss in a straight
section of the teflon rectangular guide of identical length,
cross section, and excitation. The measured insertion loss
of the interferometer was less than 2 dB, or 1 dB per
Y-junction.

The test setup and power division data are given in Fig.

4. The P, /P, exhibits deviation less than 0.5 dB from the

ideal 0-dB power division over most of the frequency
range, which is generally tolerable for Y-junction applica-
tions.

The VSWR’s in ports 1 and 2 were measured using a
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sliding electric-field probe [7]. VSWR’s less than 1.05 were
registered for both even and odd (E, = — E,; E;=E,;=0)
excitations.

The obtained data supports our assumptions adopted in
deriving the scattering matrix (1).



48 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32. NO. 1, JANUARY 1984

EXCITATION
HORNS
/ ’ VAR. ATTENUATOR o
a. @— 0 5 g 77 [ >—irecoroen
Y. BRANCH ’ OETECTOR
UNDER TEST -8 SWITCH
b. -0.5
"‘ “‘
|7 v 0
4y '
\/ \J /\ +05
+10
L 1 1 1 1 i 1
98 99 100 101 102 103 104

FREQUENCY (GHz)

Fig. 4. The measurement of the power division in a Y-junction. (a) Test
setup. (b) Measured power ratio 10 log( P, / P).

IIL

The modulator and switch applications of the dielectric-
guide Y-branch interferometer take advantage of the de-
pendence of output power in the third arm (Py) on a phase
shift ¢ between phasors E; and E,. The phase shift ¢
causes mixed even and odd excitation in the wide section
of the Y-branch (see Fig. 2). Only the even mode of the
wide section passes through tapered Section III, where it
gradually transforms to an E}; mode of a single-mode
guide 3, while the odd mode totally radiates out. Low
measured VSWR’s indicate that most of insertion losses in
odd excitation modes are due to radiation rather than
reflection.

Let us now obtain the on/off power ratio R =Py _/P;
that is important for the switch applications. In order to
obtain port 3 output power (), substitute E; =P, ; E,
= \/Ee"”; E,=E,=0into (1)

P{=E{-E{=1/2[ P,(1+8)+ P,(1- §)

Y-BRANCH INTERFEROMETER

+2//P,P,(1-6%) cosg|. (2)

Substitute ¢ = 0 into (2) in the case of P; and ¢ =180°
at Py, resulting in

1+/(1=8%)(1—A2) +8-A]
O LER(CRT R &) +o I .
(A+9)
Here & characterizes the actual asymmetry of the Y-junc-
tion and A gives the rate of input powers asymmetry:
P,=PFy(1+A) and P, = P,(1— Q).

A Y-junction modulation capability is measured as shown
in Fig. 5. Attenuator 1 in the first arm adjusts amplitude
ratio P, /P,, while the variable phase shifter in the second
arm sets the phase difference ¢ between input fields E; and
E,. The total interferometer insertion loss from point A to

Impatt
oscillotor

-]
Detector |

Y~junction
under test

Fig. 5. Interferometer setup for the Y-branch modulator tests.
point B was measured for each ¢. Attenuator 2 was read-
justed to keep the output voltage of the detector 1 on a
constant reference level.

Further experiments contributed to better understanding
of modulation and switching properties of the Y-branch.
After adjusting attenuator 1 for equal powers in both
branches, the output power Py was measured as a function
of ¢ (Fig. 6, A =0). The R value was measured as 200 or 23
dB. For A =0, an absolute value of parameter |§| = 0.1305
was calculated from (3). The real value of § will be negative
(8 = —0.1305), since tuning attenuator 1 down enhances
the R value. In other words, 43 percent of the power
incident at port 3 will be coupled to port 1 and the rest, 57
percent, to port 2.

According to (3), one may obtain theoretically unlimited
R values, by making A= —38. A=0.1305 was achieved
when attenuator 1’s reading was reduced by 1.15 dB.
Corresponding test results (curve A=0.1305 in Fig. 6)
show the enhancement of R to 36 dB, at least. The mea-
surement of the actual R value was obscured by noise.

A phase shifter incorporating metal wall proximity to a
dielectric guide was recently applied for electronically
steerable dielectric antennas [8)]. A trapezoidal metal plate
used for phase shifting in the test setup (Fig. 7) provided
gradual transition in the direction of propagation and
reduction of reflections.

Attenuator 1 was set for A= — 38§ =10.1305. Then the
metal plate was brought in a distance d to the broad wall
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Fig. 6. The measured dependance of the arm 3 output power on the
phase shift between two input arms.
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Fig. 7. A setup for the metal plate phase-shifting element tests.

of the interferometer arm 1. This caused a phase delay in
the arm 1, due to the increased propagation constant S.
Fig. 8 presents the measured phase shift inserted into arm
1, and the port 3 output power as a function of gap width
d. The maximum phase delay of 297° is observed at d = 0
and may be compared with the computed value

Ap=1-[B(d=0)—p(d = )]
where B(d = o0) and B(d = 0) are propagation constants in
isolated dielectric and image guides, respectively. The ef-

fective dielectric constant (EDC) method determining
propagation constants gives

Ap =22 (mm)-[2.4929 —2.1963] rad/mm = 375°

which is substantially higher than the measured value. This
discrepancy may be attributed either to the air gap still
existing between the plate and a guide at d =0, or to the
uncertainty of the €, value. As anticipated, the minimum of
P/ corresponds to a 180° phase delay.

The observed peak-to-valley ratio was R = 36.0 dB. The
degradation of the R value as compared to the case where
A = —6=0.1305 (Fig. 6) was caused by losses inserted into
branch 1 due to the metal plate proximity. These measured
losses are shown in Fig. 9 as the function of d. The 180°
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Fig. 8. Measured phase delay in the first branch due to metal plate
proximity and the port-3 output power as a function of d.
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Fig. 9. Losses inserted in the first branch due to the metal plate
proximity.

phase shifter inserts 0.7-dB losses in branch 1, which must
be taken into account in power balance between branches
in order to obtain optimal R values.

Finally, tests were performed on a completely dielectric
Y-branch interferometer (see insert in Fig. 10) using the
same trapezoidal metal plate (/ = 22 mm) as a phase shifter
in one of the interferometer arms. The 180° phase shift
was obtained at d =32 mils, which coincides with the
results in Fig. 8. The observed R value was 36.5 dB. The
phase shift of 360° obtained at d = 0 is in good agreement
with the EDC calculated Ap = 375°.

Fig. 10 illustrates some difficulties in fabrication of the
mechanical switch, The gap width d required for device
operation in the off-state dictates tolerances as high as a
few mils. In contrast, electronically controled phase shifters
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Fig. 10. Measured dependence of the Y-branch interferometer output
power on the gap width d between the metal plate and the interferom-
‘eter arm.

using either distributed p-i-n diodes or a plasma state in a
semiconductor makes the whole construction rugged.

Let B,(f) and B,(f) be propagation constants of the
dominant modes in an isolated dielectric guide and one
with the proximate metallic plate, respectively. Then with d
and / adjusted for a 180° phase delay at central frequency
of f,, the phase delay due to the metallic wall in the vicinity
Af of f, will be

Ap(fo+Af)=[Bo(fo+Af) =B (fo+Af)]

=100 4+ | B2 _ 9B .
=180 +[3f afL=folAf.

Making slopes of dispersion curves B,(f) and B,(f) close
to each other, one can achieve a high value of R over a
wide frequency range.

For illustration, let us consider the phase shifter for the
teflon 2 X 1-mm guide providing Ap =180° at f, = 98 GHz
under the d =0 condition. The computed length / for the
180° phase shift is 10.6 mm. Assuming A = § =0, one can
readily determine the minimum permissible switch on/off
power ratio R ;. from(2)

1
~ 1+cos (180° + A‘Pmax)

min

where Ag,,,, is a maximum deviation of the phase delay
from the 180° value. For R, = 25 dB, Ag,,,, 15 6°30". On
dispersion curves for the isolated guide (on-state) and
image guide (off-state), such a Ag value corresponds to the
points +2.7 GHz apart from f,. The Y-branch interferom-
eter (insert in Fig. 10), when adjusted for the minimum
output power at f, =98 GHz (d =32 mils), exhibited R
values better than 25 dB over the whole 98-104-GHz
frequency range.

Obviously, the bandwidth may be expanded by widening
the d gap required for the 180° delay.

IV. CONCLUSION

The experiments conducted in the course of this study
allowed us to draw the following conclusions.

1) The DGY interferometer may be applied as a switch-
ing and modulating element for low-cost millimeter-wave
integrated circuits.

2) A maximum-to-minimum switching ratio is theoreti-
cally unlimited for a given frequency. Even with the rough
teflon interferometers, values as high as 36 dB at a single
frequency and about 25 dB over a 98-104-GHz range were
observed. ‘

3) A DGY interferometer in combination with electroni-
cal phase shifters promises to be very useful electronically
steerable modulators and switches.

4) The Y-junction may be applied for power splitting in
millimeter-wave balanced mixers and antenna feeders.
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