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by design, it follows from (32)-(34) that

k

‘=m
(35) ‘6]

for all practical slot widths and thicknesses. [7]

From physical considerations, it is known that 0< k <1

and, hence from (35), the range of x is O < x <0.5. In order [8]

to satisfy this constraint, it is necessary to select the

solution with the negative sign before the square root in [9]

(28). Therefore [10]

x = (1–di7)/t (36) ~111

and from (35) it follows that

1–43
[12]

k= (37)
t–(1–dm)

which is the desired relationship between tand k.
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Abstract —Armficabilitv of a W-band dielectric-guide Y-branch (DGU. .
interferometer as a modulator and switching element for the millimeter-wave
planar dielectric-guide integrated circuits is established, The switching
element includes a phase shifter formed by a metal wall proximate to a

dielectric guide.
‘f’be influence of the branches asymmetry on the on/off switching ratio

was measured and found to comply with theory. On/off switching ratios of

about 25 dB were obtained over a 98- 104-GHz freqnency range.
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I. INTRODUCTION

A LTHOUGH the dielectric-guide Y-branch (DGY)

interferometer is extensively applied in the optical

integrated circuits for power splitting, light intensity modu-

lation, and switching [1], to our knowledge no experimental

data on this subject has been published with respect to the

millimeter-wave range. This study seeks to establish the

applicability of the Y-branch element in the W-band in-

tegrated circuits. Low radiation losses under even excita-

tion, near-3-dB power division, and low VSWR values were

observed in the Y-junction.
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Fig. 1. The Y-junction anafogy to the” magic-T”.

In Section II, application of a DGY interferometer as a

low-loss near-3-dB coupler is discussed. The modulation

and switching properties of the DGY interferometer are

studied in Section III, which contains test data on a phase

shifter using a metal plate proximate to a broad wall of the

guide.

These phase shifters may be designed using a distributed

p-~-n diode structure attached to a sidewall of a

nulhmeter-wave dielectric guide [2], [3]. Another attractive

phase-shifting mechanism based on an induced plasma

state in semiconductor guide [4], [5] may serve for ultrafast

switching. We believe that DGY interferometers using

similar phase shifters may be successfully applied as milli-

meter-wave modulators and switches.

II. Y-JUNCTION

A detailed discussion of the near-3-dB Y-junction cou-

pler is given [6]. Relevant results are borrowed herein the

original notations.

A remarkable property of the absolutely symmetric loss-

less dielectric guide Y-junction is the identity of its S-

matrix with that of “magic-T” in microwave circuits. A

Y-junction may be considered as a four-port device in

which the fourth port takes all power radiated out of the

guided-wave system (see Fig. 1). Assuming no reflected

waves, near-3-db power division means coupling of 1/2(1

+8) of port 3 input power into port 1 and 1/2(1 – 8) of

port 3 input power into port 2. The four-port scattering

matrix correlates the output (E’) and input (E) electric

fields
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Fig. 2. The geometry of the Y-junction.
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Fig. 3. Insertion loss (dB) of the Y-branch interferometer referenced
against the insertion loss of a straight guide section.

The test program included measurements of insertion

losses in the transitional sections of a Y-junction under

even excitation (El = E2; E3 = E4 = O). For this purpose,

two Y-junctions were connected back-to-back, forming an

interferometer. Fig. 3 represents the total insertion losses in

an interferometer, as referred to the loss in a straight

section of the teflon rectangular guide of identical length,

cross section, and excitation. The measured insertion loss

of the interferometer was less than 2 dB, or 1 dB per

Y-junction.

The test setup and power division data are given in Fig.

4. The P1/Pz exhibits deviation less than 0.5 dB from the

ideal O-dB power division over most of the frequency

range, which is generally tolerable for Y-junction applica-

tions.

The VSWRS in ports 1 and 2 were measured using a
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A DGY junction was tested over a range of 98-104 GHz

(Fig. 2). All three ports of the Y-junction are single-mode

2 xl-mm teflon (c, = 2.057) guides. The broad wall of

branch 3 tapers to 4 mm, and splits symmetrically into

branches 1 and 2.

sliding electric-field probe [7]. VSWRS less than 1.05 were

registered for both even and odd (El = – E2; E3 = E4 = O)

excitations.

The obtained data supports our assumptions adopted in

deriving the scattering matrix (l).
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Fig. 4. The measurement of the power division in a Y-junction. (a) Test
setup. (b) Measured power ratio 10 log(P1 /P2).

III. Y-BRANCH INTERFEROMETER

The modulator and switch applications of the dielectric-

guide Y-branch interferometer take advantage of the de-

pendence of output power in the third arm (Z’;) on a phase

shift q between phasors El and E2. The phase shift T

causes mixed even and odd excitation in the wide section

of the Y-branch (see Fig. 2). Only the even mode of the

wide section passes through tapered Section III, where it

gradually transforms to an EL mode of a single-mode

guide 3, while the odd mode totally radiates out. Low

measured VSWRS indicate that most of insertion losses in

odd excitation modes are due to radiation rather than

reflection.

Let us now obtain the on\off power ratio R = P~m=/P~m,n

that is important for the switch applications. In order to

obtain port 3 output power (P;), substitute El = ~; E2

= fid~; E, = E, = O into (1)

[
P:= E;. E:=l/2 P,(1+8)+P2(1–8)

+ 2{~ Cos q] . (2)

Substitute q = O into (2) in the case of P;mu and q = 1800

at P;m,n, resulting in

~= [l+((l-a’)(l-A’) +&A]2

(A+d)2 “
(3)

Here 8 characterizes the actual asymmetry of the Y-ju,nc-

tion and A gives the rate of input powers asymmetry:

PI= PO(l+ A) and P2 = PO(l– A).

A Y-junction modulation capability is measured as shown

in Fig. 5. Attenuator 1 in the first arm adjusts amplitude

ratio PI /P2, while the variable phase shifter in the second

arm sets the phase difference p between input fields El and

E2. The total interferometer insertion loss from point A to

ATT.2 ATT.I

Imptit

08clllator

Y- junction

und*r tast

Fig. 5. Interferometer setup for the Y-branch modulator tests.

point B was measured for each q. Attenuator 2 was read-

justed to keep the output voltage of the detector 1 on a

constant reference level.

Further experiments contributed to better understanding

of modulation and switching properties of the Y-branch.

After adjusting attenuator 1 for equal powers in both

branches, the output power Pi was measured as a function

of p (Fig. 6, A = O). The R value was measured as 200 or 23

dB. For A = O, an absolute value of parameter 181= 0.1305

was calculated from (3). The real value of 8 will be negative

(8= – 0.1305), since tuning attenuator 1 down enhances

the R value. In other words, 43 percent of the power

incident at port 3 will be coupled to port 1 and the rest, 57

percent, to port 2.

According to (3), one may obtain theoretically unlimited

R values, by making A = – 8. A = 0.1305 was achieved
when attenuator 1’s reading was reduced by 1.15 dB.

Corresponding test results (curve A = 0.1305 in Fig. 6)

show the enhancement of R to 36 dB, at least. The mea-

surement of the actual R value was obscured by noise.

A phase shifter incorporating metal wall proximity to a

dielectric guide was recently applied for electronically

steerable dielectric antennas [8]. A trapezoidal metal plate

used for phase shifting in the test setup (Fig. 7) provided

gradual transition in the direction of propagation and

reduction of reflections.

Attenuator 1 was set for A = – 8 = 0.1305. Then the

metal plate was brought in a distance d to the broad wall
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Fig. 7. A setup for the metaf plate phase-shifting element tests.

of the interferometer arm 1. This caused a phase delay

the arm 1, due to the increased propagation constant

Fig. 8 presents the measured phase shift inserted into arm

1, and the port 3 output power as a function of gap width

d. The maximum phase delay of 2970 is observed at d = O

and may be compared with the computed value

Arp=l. [fJ(d=O)-~(d=co)]

where B( d = OC)and B( d = O) are propagation constants in

isolated dielectric and image guides, respectively. The ef-

fective dielectric constant (EDC) method determining

propagation constants gives

Aq = 22 (mm). [2.4929 – 2.1963] rad/mm = 3750

which is substantially higher than the measured value. This

discrepancy may be attributed either to the air gap still

existing between the plate and a guide at d = O, or to the

uncertainty of the c, value. As anticipated, the minimum of
P; corresponds to a 1800 phase delay.

The observed peak-to-valley ratio was R = 36.0 dB. The

degradation of the R value as compared to the case where

A = – 8 = 0.1305 (Fig. 6) was caused by losses inserted into

branch 1 due to the metal plate proximity. These measured

losses are shown in Fig. 9 as the function of d. The 1800

---

U w
d(mils)

Fig. 8. Measured phase delay in the first branch due to metaf plate
proximity and the port-3 output power as a function of d.

1
metal plate

m
0

-
~

~

z \,”
diel. quode

a
a
m2.o ‘}

\
\O

\
\

\\

0’.4
‘,R

,0

‘\ o
‘,

‘.*
‘\

,!
\

I ‘,,
I 1 I I -

0 1020304030

d (m,l)

Fig. 9. Losses inserted in the first branch due to the metal plate
proximity.

phase shifter inserts 0.7-dB losses in branch 1, which must

be taken into account in power balance between branches

in order to obtain optimal R values.

Finally, tests were performed on a completely dielectric

Y-branch interferometer (see insert in Fig. 10) using the

same trapezoidal metal plate (1= 22 mm) as a phase shifter

in one of the interferometer arms. The 1800 phase shift

was obtained at d = 32 roils, which coincides with the

results in Fig. 8. The observed R value was 36.5 dB. The

phase shift of 3600 obtained at d = O is in good agreement

with the EDC calculated Arp = 3750.

Fig. 10 illustrates some difficulties in fabrication of the

mechanical switch. The gap width d required for device

operation in the off-state dictates tolerances as high as a

few roils. In contrast, electronically controled phase shifters
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d (roils)

Fig. 10. Measured dependence of the Y-branch interferometer output

power on the gap width d between the metaf plate and the interferom-

eter arm.

using either distributed p-i-n diodes or a plasma state in a

semiconductor makes the whole construction rugged.

Jet fil(~) and J32(~) be propagation constants of the

dominant modes in an isolated dielectric guide and one

with the proximate metallic plate, respectively. Then with d

and 1 adjusted for a 1800 phase delay at central frequency

of& the phase delay due to the metallic wall in the vicinity

Af of fo, will be

A~(fo+Af) = [&( fo+Af)-A(fo+Af)]”~

‘1800+[%-%lf=fo”z”Af
Making slopes of dispersion curves &(f) and ~z( f ) close

to each other, one can achieve a high value of R over a

wide frequency range.

For illustration, let us consider the phase shifter for the

teflon 2X l-mm guide providingAT=1800 at f. = 98 GHz

under the d = O condition. The computed length 1 for the

1800 phase shift is 10.6 mm. Assuming A = 8 = O, one can

readily determine the minimum permissible switch on/off

power ratio Rti from (2)

Rmti =
1

1 +cos(180° + Aq~m)

where A~~m is a maximum deviation of the phase delay

from the 1800 value. For Rti = 25 dB, Arpma is 6030’. On

dispersion curves for the isolated guide (on-state) and

image guide (off-state), such a Arp value corresponds to the

points i-2.7 GHz apart from fo. The Y-branch interferom-

eter (insert in Fig. 10), when adjusted for the minimum

output power at ~0 = 98 GHz (d= 32 nils), exhibited R

values better than 25 dB over the whole 98–104-GHz

frequency range.

Obviously, the bandwidth may be expanded by widening

the d gap required for the 1800 delay.

IV. CONCLUSION

The experiments conducted in the course of this study

allowed us to draw the following conclusions.

1) The DGY interferometer maybe applied as a switch-

ing and modulating element for low-cost millimeter-wave

integrated circuits.

2) A maximum-to-minimum switching ratio is theoreti-

cally unlimited for a given frequency. Even with the rough

teflon interferometers, values as high as 36 dB at a single

frequency and about 25 dB over a 98–104-GHz range were

observed.

3) A DGY interferometer in combination with electroni-

cal phase shifters promises to be very useful electronically

steerable modulators and switches.

4) The Y-junction may be applied for power splitting in

millimeter-wave balanced mixers and antenna feeders.
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